Grid resolution effects on LES of a piloted methane-air flame
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Abstract

The grid dependence of LES of a piloted methane-air (Sanjiifabe is studied on a series of grids with progressively
increased resolution reaching about 10 million cells. Cieahtompositions, density and temperature fields are neadel
based on the evolution of mixture fraction combined witheadly flamelet model. However, to minimize interpolation
uncertainties that are routinely introduced by a standamdlet look-up table procedure, we adopt a simple smooth an-
alytical relationship for specific volume and temperatwdumctions of mixture fraction. Such an analytical relaship
can be easily inferred by approximating a steady flamelett®ol by quadratic functions that are known to give a quite
accurate representations of the lean mixtures. The siioolagsults are discussed and compared with available exper
mental data. In particular, the dependence of LES turbuiatistics on the turbulence resolution length scale ityaed
and tested for the existence of intermediate inertial raxgyenptotic behavior. For the most part, the statistics emye/for

the finest grids, but the RMS of the mixture fraction earlytie flame shows some residual grid dependence.

Introduction duces a flamelet table which represents a discrete approxi-

Large Eddy Simulation (LES) has proved to be fiee=  mation of a smooth surface (manifold) in the space of ther-
tive simulation approach for a wide range of turbulent flowsmochemical variables so that all chemical species, temper-
including chemically reactive turbulent flows [1, 2, 3, 4]. ature and density can be retrieved from the flamelet table
This latter class of flows adds an extra set of challenged values of the parametrized variables are provided. The
to LES modeling. In addition to accounting for thfeets ~ predictive accuracy, thus, is based on two things: (i) the
of the unresolved dynamic scales, the small-scale molecurarametrizing variables, i.e., the mixture fraction (atia-o
lar mixing and chemical reaction processes, which usuallyrs variables) should be accurately predicted from integra
occur on scales much smaller than LES grid, have to béion of their LES evolution equations; and (ii), the flamelet
modeled as well. Nevertheless, the number of successfilarametrization should adequately approximate the chem-
applications of LES accompanied by rather sophisticatedcal reaction manifold. While such a simplified turbu-
combustion models[5, 6, 7, 8, 9], as well as by models withencgchemistry interaction treatment might fall short in
simplified chemistry treatment, [10, 11, 12, 13] has beerfepresenting realistic combustion chemistry, as oppased t
growing, and these simulations have demonstrated the afore advanced and technically elaborated approaches such
tractiveness of the approach not only for canonical geomeas transported PDF based methods [24, 20], it provides
tries like laboratory jet flames but also for complex onesa useful tool to study particularffects of sub-filter scale
like gas-turbine combustors [14, 15, 16]. or/and combustion models on the LES solution.

In this work we focus on one of the canonical flame con- Here, we follow a similar simplified approach by rep-
figuration from the TNF flame series — Sandia flame D.resenting the chemistry by a single mildly-strained steady
This piloted non-premixed methane-air flame has been exlamelet solution based on integration of a one-dimensional
tensively studied experimentally by Barlow & Frank [17] counter-flow difusion flame with the detailed GRI-Mech
and by Schneider et al. [18], and, as a result, it represents &3.0 chemical mechanism. A flamelet solution is obtained
ideal benchmark case for testing and developing combugrom the OPPDIF module of the CHEMKIN commercial
tion models in the context of LES. A number of LES studiessoftware. Instead of forming a flamelet table, we approxi-
of Sandia flame D have been performed successfully in théhate the flamelet solution for specific volume and temper-
past [11, 19, 20, 13, 21] with combustion models of vary-ature by quadratic functions of the mixture fraction, i.e.,
ing complexity. Most combustion models center on a mix-p~(£) = a+ b¢ + c£% andT(£) = ar + bré + cré2. These
ture fraction based flamelet approach [22], where chemiapproximations are smooth, and hence eliminate flamelet
cal composition, temperature and density are parametrizei@ble interpolation uncertainties, and provide an aceurat
by one (or a few) field variables such as the mixture frac-fit to the flamelet solution for lean mixtures, while slightly
tion £(x, t) and its scalar dissipation rate, or a specially con-underpredicting density and overpredicting temperatore f
structed progress variable [23]. Such a parametrization pr rich mixtures correspondingly. Mixture transport proper-

ties, such as molecular viscosity andfdsivity, are also
obtained from the flamelet solution and are fitted to a power

*Corresponding author: kak262@cornell.edu law form in temperature, before being used in the LES
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LES focuses on the explicit simulation of the large (re- sponding experimental data are readily available for com-
solved) scales of the turbulent motion where tifie@ of  parison [17, 18]. We focus mainly on the mixture frac-
unresolved scales is represented by a model. The resolvdin because of its importance in non-premixed combus-
LES fieldu“(x, t) is very often associated with spatial filter- tion modeling. Many flamelet-based approaches involve
ing of the underlying turbulent field, resulting in the fikek  the mixture fraction which is used to parametrize chemi-
field u(x,t). While such a definition of the resolved fields cal composition, molecular properties and enthalpy. And
can be somewhat helpful in derivation of the LES equa-therefore, it is a minimal requirement to accurately predic
tions, albeit under very restrictive conditions of the uni- an evolution of the mixture fraction.
formity of filter width and commutativity between filtering
a_nd diferentiation, generglly it appears to be mislead_ing "?‘sSpecific Objectives
discussed, for example, in [25]. The resolved LES field is

. ! . In LES of variable-density turbulent flows with
defined as the solution of the LES equations. We further . . .
note that invoking the concept of filtering in deriving LES parametrized chemistry one solves large-scale evolution

. . . ] equations for the resolved density, and the density weighte
equations is at least debatable since these equations aris y y wetl

naturally in multiscale formulations [26], of in regulaai Velocity and the mixture fraction fields. With a little abuse
. . . L HLZ of notation, they are customary denotegpasi andé, re-
tion of the Navier-Stokes equations [27] without making : y u y Pas, d

. ) . .~ spectively. Here, the common Favre notation for the den-
use of filters. The LES solution depends on the filter width_; . L e —
A(X), or more appropriately, on the turbulence resolutionSlty weighted resolved quantity is used, i&= pé/p. The

i - combustion model is specified through quadratic relation-
l;?g;g scale [25], as it explicitly enters models for the SGSships between specific volume and temperature which re-

) o ) sults in the following resolved equations:
Following [25], letQ™ and Q denote statistics of inter- o o _ _
est that are derived from an LES solution and from the  1/p=1/p=a+bé+c?, T=ar+bré+cré? (1)
full turbulent field, respectively. For example, these can b

| fh ived and full mixture fracti .~ These relationships are nonlinear and depend on the sub-
mean values of Ine resolved and Tufl mixture fractions, I'e'grid scale fluctuations of the mixture fraction which are

Q™ = (£H(x, 1))y andQ = (£(x, 1)). In practice, the predictive Ilv ch . h . | .
capabilities of LES are judged based on comparison of LEéizsuavy characterized b_y the subgrid scale \_/arla‘msce__-
statisticsQ™ to the “true” statisticsQ obtained from the ¢ — ¢ - Instéad of solving a transport equation #or di-

high-resolution experiments or, for low Re-number flows, rectly, in this work we carry an equation fg? explicitly.

from DNS. However, as was discussed by Pope [25], al his proves to be more advantageous since the latter equa-
comparison based on a single LES realization cannot bon does not contain extra production terms [8]. Thus, the
deemed satisfactory, since LES statistics depend on the tugonsidered LES system of the governing equations is given
bulence resolution scal&(x). Therefore, to evaluate the DY:

fidelity of LES predictions it is necessary to consider the op  opy;

dependence of LES statistics afx), i.e., Q™(A(x)). Fur- T -0 (2)

thermore, based on such dependence, several criteria on !

how to compare dierent LES models with respect to accu- dpU;  Opuy; op o (,— —

racy and cost can be formulated [25]. These criteriause a 4t X; T T ox + Za_xj((” +u1)(Sij- ©)

notion of the intermediate statistic asymptQg that rep-

resents values of LES statistics which are, in a certain-reso _}‘S‘kk(;ij))’

lution range, independent af(x). A study of the sensitiv- 3

ity of LES statistics toA(x) gains more relevance for LES OpE 6,5?1,75 o 1 — 0

of combustion systems. In turbulent combustion, the rate ~ —= + = = —(p(D + DT)—‘), 4)
ot (9Xj (9Xj (9Xj

controlling processes such as reactant mixing and chemi-

cal reactions occur on the small scales which are usually

much smaller thar\(x). As a result, the resolvedfect of

the complex small-scale turbulerickemistry interactions

is modeled in anféordable way by a combustion model. A — =2 FT_TED T B T

question of how a particular combustion modgats LES p=pEE), T=TEE). u=p(T). D=D(T). )

statistics with respect to the true statistig€an be studied with §ij andy, are being the resolved strain rate and

based orQ™(A(x)). scalar dissipation rate, respectively. In the LES momen-
In this work we apply a simple combustion model to tum equation, Eq.(3), the Smagorinsky model is used to

study the &ects ofA(x), i.e., resolution flects, on statistics ~ Obtain the deviatoric part of the unclosed SGS strgss

of the mixture fractior" (x, t) and velocityu“(x, t) fields in iU} — pUiU;:

LES of Sandia flame D. Mean and root mean square (RMS) 5ij - Gij=

values are chosen to be representative statistics sinoe cor Tij T g Tk = 2MT(Sii - gskk)’ (7)

P IE 8 (= P\
OpET | oPYj —_(p(D+DT)6—i)—2pxg, ©)

ot (9Xj B (9Xj
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Figure 1. Specific volume vs. mixture fraction: (a) quadrdfs) and piece-wise quadratic (L, R) models compared to tredlet solution from
CHEMKIN; (b) quadratic and piece-wise quadratic modelsdifierent values of the subgrid variandg = a&(1 - £) with & = 0,0.2, 0.6 (in descending
order).

. . . . — — In this case the flamelet solution is approximated by the left
- 2 |8 &
with the eddY viscosity belngr._ pCsA”2SijSij, where (L) and the right (R) pieces of parabolas smoothly merging
the Smagorlnsky' constai@s is computed according 'Fo at the maximum pointax as shown in Fig. 1(a). These ap-
Germano dynamic procedure. In both scalar equat'onsproximations produce a set of nine dieientsa, b, ¢ and

Egs. (4) and (5), the unclosed subgrid scalar flux is modaL = bL R, CLR, respectively, for both density and tempera-
eled by a standard gradientfidision hypothesis with the ure. '

same subgrid dii_usivitprT_ for both scalar fields, for ex- The direct application of the piecewise quadratic ap-
ample for the mixture fraction one has: proximation to calculate an LES density field, i.e., when
o GE subgrid fluctuations are present and the subgrid variance
PU& — puié = pDr —=. (8) is non-zero, would result in a discontinuity at the maxi-
0% mum point due to dferences in the cdicients describ-
The subgrid diusivity is specified based on the eddy vis- INg the left and the right branches of a quadratic func-

cosity and the subgrid Schmidt numbera®; = ur/Scy  tion. Therefore, to guarantee continuity and smoothness of
with a commonly used value &cr = 0.4 [11]. Finally, the resolved density and temperature fields for the whole

the scalar dissipation rate in Eq. (5) is represented as: ~ range of the mixture fraction variance, we assume that the
resolved LES fields in the piecewise quadratic represen-
©) tation evolve proportionally to corresponding changes in
the approximation described by a single parabola. This

. . . translates to the following definition of the resolved den-
A combustion model and transport properties given by _1@ Ei) —V(E Ei) (and similarly for temperature):

Egs. (1) and (6) are obtained from a steady laminar flamelet'y -
solution with the detailed GRI-Mech 3.0 chemical mecha- B x>
nism. A mildly-strained flamelet solution with a strain rate V(£ &2) = (aL’R +bLrE + CL,RSS)%-
of a = 130 st is computed in a 1D counter-flow config- a+bs +cse

uration by the OPPDIF module of CHEMKIN 4.1. Un- _ | ) . e~
This equation easily follows by considerii@, 0) = ay g+

known density and temperature ¢beients are found by 2 ~~ ; . )
fitting a single parabola to the flamelet solution as shown,b'-va + CLré%, and the fractional change given by:

for the case of density, in Fig. 1(a). It exhibits an adequate ~ _— — 2 5
approximation for lean mixtures while slightly underpre- V(éf ) _at bf + Ci, (12)
dicting the density for rich mixtures. With the purpose of V(¢,0) a+bi+cee

improving the flamelet approximation we also consider a U ] ] )
piecewise quadratic relationship given by: so thaW(¢, 0) is based on the piece-wise quadratic represen-
tation, whereas the fractional change on the right hand side

1(¢) { a +bié+rad if € < émax (10) due toV is based on the quadratic representation. Equa-
P §) =

. ——— _(D+Dy) =~ -
pXe = pD|VER = p%(fz - &).

(11)

ar + bré + Cr€? i & 2 Emax. tion (11) is depicted in Fig. 1(b) for severalidirent values
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Figure 2: Molecular viscosity (a) andftlisivity (b) approximations of CHEMKIN data.

Figure 3: Computational domain and geometrical configanatif Sandia flame D



of the variance and shows continuity while retaining asym-(2-6), written in cylindrical coordinates [23]. The numeri
metry with respect to lean and rich parts of the mixture. cal method is second-order accurate in space and time and
The functional dependence of the mixture molecular vis-adopts an energy-conserving discretization scheme for the
cosity and difusivity on temperature are shown in Fig. 2(a, momentum equation. Scalar transport equations are dis-
b). They are computed from CHEMKIN and its thermal cretized using the QUICK scheme [28] and solved employ-
and transport databases, and then cast in a power-law foring a semi-implicit iterative technique, which has proven
given by: to be dtfective for typical low-Mach combustion problems
[23, 29]. Domain decomposition is used for the LES code
, (13)  parallelization.
m-s Itis clear from Eqgs. (2-6) that the LES solution is a func-
tion of the turbulent resolution scatgx). As it is custom-
(14) arily done in practice, we also associate the turbulent res-
olution scale with the local numerical grid resolutibfx),
with To = 298 K. Note that the molecular properties ex- thus enforcindi(x)/A(x) = 1. In this work we employ five
tracted from the flame calculation are double-valued func911dSGL... .. G5 with a progressively increasing resolution
tions of T — with one value on the lean side and one on thdfom about 0.2 to 10.5 million cells as detailed in Table 1.
rich side of the peak temperature. However, these propf—a‘ll grids_ are_stretched inthe _axia_ll direc_tion aswell as ie_th
erties are adequately approximated by the single-valuefpdia! direction, with clustering in the jet nozzle and pilo
power laws, Egs. (13) and (14). a_nnulus reg|pns,_wh|l_e remaining unlfqrmly spaced in the
We apply LES Egs. (2-6) to simulate Sandia flame Dcwcgmferennal d|rect|0|j. Grid resolynon parameters fo
that is shown schematically in Fig. 3, and which has beed'® 16t nozzle and the pilot are given in Table 2. ,
studied experimentally, as fully detailed in [17]. The fuel _ !N @ll simulations, with an exception of the finest grid
jet consists of 25% metha/&% air mixture and emanates C: & Z€ro state is employed as the initial condition for all
from a nozzle with diameted = 7.2 mm at a bulk velocity scalar v_arlables except the velocity field, w_hlc_h is taken to
of 49.6 mys, which defines a characteristic Reynolds num-P€ @ uniform and equal to the co-flow velocity in the whole
ber ofRe = 22,400. The nozzle is surrounded by a coaxialdomam' For thg fllnest gnd,' the initial ﬂelds are interpo-
pilot nozzle with diameter of 2.62D. The pilot flow is a lean 'ated from a statistically stationary solution on the préce

burnt mixture of GH,, air, COs, H, and No corresponding ing grid G4. Time integration is performed with a vari-
to a mixture fraction value of = 0.271, with a bulk veloc-

able time step corresponding to a CFL number of 0.3-0.4.
ity of 11.4 nys. The coaxial burner is further surrounded by Statistics are accumulated after the simulation has rehche
co-flowing air with a bulk velocity of ® nys.

0.69
u(T) = 1.75% 10-5(1) L
To

T\%72 kg
_ 5
oD(T) = 2.48x 107 (—TO) =

a statistically stationary state which is verified by conver

In this work the modeled flow configuration is studied in gence in the RMS statistics. Th|s'correspondslto about 12
a cylindrical computational domain of 13D x 20D x 2 flow-through times bas_,ed on the Jet bulk velocity aﬂd the
that is represented in cylindrical coordinatesr(6) as de- Igng_th of th_e computatlona! domain. After that the S|_mula—
picted in Fig. 3. In the simulations the jet and pilot noz- i IS continued for approximately ten flow-through times.
zles have a small axial extension aBD upstream of the LES statisticsQ™(A) are computed by averaging in time
nozzle exit plane, which is taken as the origin of the axialand the circumferential direction, and thus, are functions
coordinatex. The dimensions of the computational do- of x andr. The specific objective of the current work is to

main as well as flow variables are non-dimensionalized b)ftudy influence oAA(x) on statistics of the resolved mixture

the characteristic jet parameters (i.e., diameter, buli&ose fraction and velocity fields.

ity, density). The turbulent jet inflow velocity conditios i

generated separately by running a high resolution LES oResults and Discussion

the stationary turbulent pipe flow enforcing the experimen- Before proceeding with the discussion of results, we
tal mean and RMS of axial velocity as measured by thepoint out that a complete procedure for the estimation of
TU Darmstadt group [18]. The turbulent pipe flow simu- LES statisticQ™ should include a component which mod-
lation has been conducted on a 1936 x 96 grid with  els statistics of the unresolved (residual) motions [28]. |
periodic boundary conditions in streamwise direction. In-other words,Q™ can be decomposed &" = QY + QR,
flow velocity conditions for other inflow zones (pilot and where Q" is defined solely by the resolved LES fields,
co-flow regions) as well as inflow conditions for scalar while QR estimates the contribution from the residual
fields are prescribed based on the corresponding bulk vaFelds. In this work, we mainly focus on statistics of
ues. Finally, the convective boundary conditions are emthe resolved fields only, and thus make the approximation
ployed for velocity and scalar fields on the outflow bound-Q™ ~ QY. The modeling of the residual componedft

ary including the entrainment boundary of the computa-will be addressed in futurefiorts.

tional domain. A structured Stanford LES code is em- Axial profiles of the mean centerline mixture fraction
ployed to solve the variable-density LES equations, Egsand streamwise velocity are shown in Fig. 4. The veloc-



Grid Resolution Cells<10° Arin max Afin max
(x,r,0)

Gl 96x 64 x 32 0.196 12x 102,4.78 28x 1072, 1.96

G2 160x 96 x 64 0.983 73%x1072,2.89 18x1072 1.33

G3 256x 128x 64 2.097 5x102,1.81 14x1072 1.01

G4 256x 192x 96 4,719 5x102,1.81 94x1073 0.67

G5  320x256x 128 10.485 FHx102,1.45 70x1073 0.51

Table 1: Grid parameters and the minimumaximum cell width in the axial and radial directions.

Grid Cellsinx Cellsinr Cellsinr Cellsin Cellsin
forx <0 forjetnozzle forpilot jetnozzlewall pilotwall

Gl1 3 10 15 2 2

G2 5 15 22 3 3

G3 8 20 30 3 4

G4 8 30 45 4 6

G5 9 40 50 5 7

Table 2: Grid resolutions for the jet nozzle and the pilot.
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Figure 4: Axial profiles of the centerline mean mixture fraot(top) and mean streamwise velocity (bottom) fdfefient grid resolutions compared with
experimental data (symbols). Note that profiles@&, G4, G5 grids are essentially coincident.
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Figure 5: Radial profiles of mean and RMS of mixture fractiankf) and streamwise velocity (c, d) at the axial locatioxx/® = 1 compared with the
experimental data (symbols).
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Figure 6: Radial profiles of mean and RMS of mixture fractianlf) and streamwise velocity (c, d) at the axial locatiox/d = 2 compared to the
experimental data (symbols).
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Figure 7: Radial profiles of mean and RMS of mixture fractianif) and streamwise velocity (c, d) at the axial locatiox/ = 3 compared to the
experimental data (symbols).
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Figure 8: Radial profiles of mean and RMS of mixture fractianlf) and streamwise velocity (c, d) at the axial locatiox/@ = 7.5 compared to the
experimental data (symbols).
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Figure 9: Radial profiles of mean and RMS of mixture fractianlf) and streamwise velocity (c, d) at the axial locatiorx/@ = 15 compared to the

experimental data (symbols).
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Figure 10: Radial profiles of mean and RMS of mixture fractjanb) and streamwise velocity (c, d) at the axial locatiox/@ = 30 compared to the
experimental data (symbols).

12



0.6

x/D = 45

0.3

0.24

x/D = 45

0.18

fl’ ms

0.12

0.06

(b)

0.3

0.24

0.18

Urms

0.12

0.06

r/D (c) (d)

Figure 11: Radial profiles of mean and RMS of mixture fractjanb) and streamwise velocity (c, d) at the axial locatiox/@ = 45 compared to the
experimental data (symbols).
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Figure 12: Radial profiles of mean and RMS of mixture fractjanb) and streamwise velocity (c, d) at the axial locatiox/d@ = 60 compared to the

experimental data (symbols).
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Figure 13: Grid dependence of the mean (a) and the RMS (bedftteamwise velocity and the mixture fractiorr 4D = 1.5 andr /D = 1, respectively,
for a case ok/D = 15.

ities shown in these figures are normalized by the jet bulkhe latter, however, shows a little more complicated be-
velocity. Both mean fields exhibit convergence to almosthavior. As can be seen from Figs. 5(b)-9(b), the mixture
the same asymptotic state starting with @G@ grid, while  fraction RMS profiles exhibit a visible sensitivity to the
slightly overpredicting the mixture fraction around analxi turbulent resolution scala at the locations of their max-
location of x/D = 20. This delay of mixing is consistent ima (/D ~ 0.5 - 1.0), i.e., in a mixing layer between jet
with the adopted quadratic model for which temperaturefuel and hot pilot products. A less pronounced sensitivity
values are overpredicted for rich mixtures (with a maxi- is also seen in the mixing layer between pilot product and
mum overprediction of 20% aroungl= 0.7 — 0.8). The co-flow air at the initial stage, but it is weaker and disap-
coarser grids2, on the other hand, provides a better esti-pears at a location of/D = 15. Such a behavior suggests
mation of the mean mixture fraction at this location with that the adopted LES model, while performing adequately
some underprediction further downstream, which can ben most of the domain, is not able to capture the small-
attributed to an excessive fluctuating contribution from th scale scalar processes in the high-gradient regions. éurth
dynamically computed eddy viscosity andfdsivity. Itis  downstream, as the scalar gradient decreases, the mixture
interesting to note that the coarsest g@d gives a quite fraction RMS shows less sensitivity to and reaches an
reasonable prediction of the mean velocity, measured at Tldpproximate asymptotic stage.

Darmstadt [18], where the mean mixture fraction is sub-  he dependence of LES statistics on the resolution scale

stantially below the experimental level measured at Sandi, ,riher highlighted in Figs. 13(a, b). Here, the mean and

[17]. RMS values of the mixture fraction and streamwise veloc-
Figures 5-12 exhibit radial profiles of the correspond-ity are plotted versus the grid spacing measreThese

ing mean and RMS quantities atfidirent axial locations. profiles correspond to radial locationsgD = 1.5 for the

It can be seen that, on tl&l andG2 grids, the resolved mean, and/D = 1.0 for the RMS, respectively, and for

streamwise velocity in the near field (upxpD = 7.5)is  an axial location of/D = 15 (compare to Fig. 9). Since

characterized by excessive fluctuations, especially on thall grids are non-uniform, the grid spacing measurede-

centerline. This is probably caused by an underresolutiofined as the inverse of the number of cells in the jet (in the

in the radial direction in the explicitly simulated jet ndegz  radial direction). It is seen that the velocity statistitsim

as further evident comparing Figs. 5(c)-8(c). The radialits approximate asymptotic state, while the mixture frac-

resolution in the jet pipe is 10 and 15 cells ft andG2,  tion statistics exhibit a discernible change between thoe tw

and 20, 30, 40 cells, respectively, for gri@8, G4, G5.  finest gridsG4 andG5.

As a result, excessive centerline velocity fluctuationsgpen

trates the near field but decay quickly afi¢D = 7.5.

It can be further noted that at the far field locations the
mean streamwise velocity (ayD = 45 andx/D = 60)

Figures 5-9 show that the mixture fraction and velocity and mixture fraction (ax/D = 60) start deviating from the
reach an intermediate asymptotic stage for the resolutiomtermediate asymptotic stage in a vicinity of the center-
scale finer than that dB2. This also characterizes both line as shown in Figs. 11, 12. The reason for this could be
velocity RMS fields and the mixture fraction RMS fields, two-fold: first, the far field locations clearly require logg
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(3]
4]
5]

runs to accumulate an equivalent statistically represesta
ensemble (compared to near-field locations); second, th
increase in cell size due to stretching in the axial direttio
may be excessive. Finally, we note that the coaségyrid
provides the best approximation for RMS of the streamwise [6]
velocity atx/D = 45 (Fig. 11(d)) as well as a reasonably 7]
good approximation for the mean of the streamwise veloc- (8]
ity on the centerline (Fig. 4), which does not make this [9]
LES solution satisfactory. Thus, it is important to conside [10]
the dependence of an LES solution &fx), and to have a [12]
procedure to specify it optimally.

(13]

Conclusions
LES of the piloted non-premixed Sandia flame D have
been performed on a series of grids with progressively in{1°!
creasing resolution from 0.19 to 10.4 million cells, witketh [16)

purpose of studying the sensitivity of LES statistics to the
turbulence resolution scalgx). (17]
In the present fort, a simple combustion model has 18]
been adopted to parametrize reacting density and tem-
perature in terms of the mixture fraction and its squarel19]
(or subgrid variance). As a result, two transport equa-[zo]
tions for these scalars need to be integrated. flznents 5y
for quadratic analytic approximations of specific volume [22]
and temperature have been obtained based on a flamelé$l
CHEMKIN simulation with a detailed chemistry mecha- 24

[14]

J. J. Riley, J. Fluids Engrg. 128 (2006) 209-215.

J. C. Oefelein, Prog. Aero. Sci. 42 (2006) 2—-37.

S. Menon, P. A. McMurtry, A. K. Kerstein, in: Large Eddyrfi
ulation of Complex and Geophysical Flows, Cambridge Ursiitgr
Press, 1993.

W. K. Bushe, H. Steiner, Phys. Fluids 11 (1998) 1896—-1906

S. Navarro-Martinez, A. Kronenburg, F. di Mare, Flow BuCom-
bust. 75 (2005) 245-274.

V. Raman, H. Pitsch, R. O. Fox, Combust. Flame 143 (2065)/8.
P. Givi, AIAA J. 44 (2006) 16-23.

A. W. Cook, J. J. Riley, Combust. Flame 112 (1998) 59%-60

] H. Pitsch, H. Steiner, Phys. Fluids 12 (2000) 2541-2554

A. Kempf, R. P. Lindstedt, J. Janicka, Combust. Flamé [@D06)
170-189.

A. W. Vreman, B. A. Albrecht, J. A. van Oijen, L. P. H. de 80
R. J. M. Bastiaans, Combust. Flame 153 (2008) 394-416.
W.-W. Kim, S. Menon, H. C. Mongia, Combust. Sci. Tech314
(1999) 25-62.

F. di Mare, W. P. Jones, K. R. Menzies, Combust. Flame(2084)
278-294.

K. Mahesh, G. Constantinescu, S. Apte, G. laccarionH&m,
P. Moin, J. Appl. Mech. 73 (2006) 374-381.

R. S. Barlow, J. H. Frank, Proc. Combust. Inst. 27 (199887—
1095.

C. Schneider, A. Dreizler, J. Janicka, E. P. Hassel, Rast Flame
135 (2003) 185-190.

A. Kempf, F. Flemming, J. Janicka, Proc. Combust. |186t(2005)
557-565.

V. Raman, H. Pitsch, Proc. Combust. Inst. 31 (2007) +1719.

D. J. Clayton, W. P. Jones, Flow Turb. Combust. 81 (2@38)-521.
N. Peters, Prog. Energy Combust. Sci. 10 (1984) 319-339

C. D. Pierce, P. Moin, J. Fluid Mech. 504 (2004) 73-97.

] S. B. Pope, Prog. Energy Combust. Sci. 11 (1985) 119-192

25] S. B. Pope, New J. Phys. 6 (2004) 35.

nism. These approximations are found to be quite accuratgg
for lean mixtures while slightly underpredicting the react [27]
ing density for rich ones. In addition, the smoothness of
the quadratic model eliminates thé&ext of interpolation (28]
uncertainties on an LES solution and its statistical depenpg
dence on the turbulence resolution scaf).

Mean and RMS values of the mixture fraction and
streamwise velocity have been chosen as representative
LES statistics of interest. Generally, a simply combustion
model is found to be capable to reproduce essential features
of Sandia flame D, especially on fine grids. The hypothe-
sis of the intermediate asymptotic behavior of LES statis-
tics with respect ta\(x) has been tested and found to hold
true throughout the most of the flow domain. However, the
RMS of the mixture fraction is found to be non-convergent
to an asymptotic state in high scalar gradient regions.
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